Acoustic Discrimination
Exploring Technology to Support Selective Fishing
Acoustic Data Can Help Fishers Identify Species at FADs
Tuna fishers use buoys equipped with echosounders to remotely track their FADs in the ocean. They plan fishing trips based on the buoys' acoustic estimate of the amount of fish aggregated at FADs.
But current technology does not allow for discriminating species or sizes, which means fishers may spend time and resources traveling to areas where the FADs have attracted other species or sizes they were not targeting for their catch.
Target Outcome: Knowing which species are at FADs can help a vessel's crew focus most on the FADs that are attracting a higher proportion of the target tuna species. This approach can reduce overfishing and bycatch — and also save fuel and reduce emissions from fishing operations.
One current challenge to fishing selectively is that FADs can attract a mix of tuna and other marine species as well as fish of different sizes, making it difficult to catch only the tuna species that are being targeted.
FAD tracking buoys with echosounders emit sound pulses that reflect off underwater targets like fish. Fishers rely on echosounder data to know the amount of fish that are aggregating at FADs.
Each species sends a different sound response back to echosounders — and has a distinctive acoustic signature.
As of 2022, after years of research, scientists have "decoded" the individual acoustic signatures of skipjack, bigeye, and yellowfin. These three species have contrasting frequency responses.
Species Reflect Sound Differently
Skipjack, bigeye, and yellowfin are the main tropical tuna species found at FADs. Depending on the ocean region, certain species may be suffering from overfishing. Ideally, before they make a set, fishers could target the tuna species whose stocks are at healthy levels.
The process of using echosounders to identify and differentiate species is called “acoustic discrimination.”
Tuna species produce different acoustic signatures based on the presence/sizeor absence of a swim bladder.
Swim bladder: an air-filled sac that functions as a ballast organ, enabling the fish to maintain its swim depth without floating upward or sinking.
Fish with a swim bladder, like bigeye and yellowfin tuna, reflect more sound.
Fish without a swim bladder, like skipjack tuna, reflect less sound.
Acoustic Discrimination Timeline
Through at-sea research, ISSF scientists have been studying the acoustic responses and behavior of tuna and other species in purse-seine fisheries.
Our findings may enable tuna fishers to use echosounders and other acoustic equipment to better identify the species, size, and number of tuna and non-tuna at fish aggregating devices (FADs) before they cast their nets — helping to avoid overfishing and reduce bycatch.
ISSF acoustic-discrimination research has been funded by the FAO GEF Common Oceans ABNJ Tuna Project, the Basque government, and NOAA fisheries.
Timeline Key
Technology | Research | Publications |
1984 First generation of radio buoys |
|
1986 Second generation of radio buoys |
1996 Radio buoys with Global Positioning System (GPS) |
|
1999 First generation of echosounder buoys |
2006–07 Second generation of echosounder buoys |
2011 Eastern Pacific Ocean ISSF research cruise on the vessel Yolanda L | Acoustic and optical surveys of aggregated tunas |
|
2013 Multi-frequency echosounder buoys |
|
2014 Central Pacific Ocean ISSF research cruise on vessel Albatun Tres | Comparing echosounder measurements at different frequencies with catches at FADs |
|
2014 “Evolution and current state of the technology of echo-sounder buoys used by Spanish tropical tuna purse seiners in the Atlantic, Indian and Pacific Oceans” | Published in Fisheries Research |
|
2015 Tuna target strength and frequency response research begins at sea |
|
2016 Atlantic Ocean ISSF cruise on vessel Mar de Sergio | Comparing four different brands of echosounder buoys, and sampling to compare acoustic data and species composition |
|
2016 ISSF research with IATTC in Achotines laboratory, Panama | Acoustic studies of target strength and frequency response of isolated yellowfin tuna in an offshore cage |
|
2016 “Towards acoustic discrimination of Tuna species at FADs” | ISSF blog post on acoustic discrimination |
|
2018 “Target strength of skipjack tuna (Katsuwonus pelamis) associated with Fish Aggregating Devices (FADs)” | ICES Journal of Marine Science article on acoustic identification of skipjack |
|
2019 “Towards acoustic discrimination of tropical tuna associated with Fish Aggregating Devices” | PLOS ONE journal article on ISSF acoustic research |
|
2019 “In situ target strength of bigeye tuna (Thunnus obesus) associated with fish aggregating devices” | ICES Journal of Marine Science article on species identification |
|
2019 “Decoding the acoustic signatures of bigeye and skipjack tuna at sea could help fishers estimate the number of fish by species and size — and reduce bycatch" | ISSF blog post on acoustic discrimination |
2019–Present ISSF and AZTI research in Achotines laboratory | Development of acoustic-discrimination technology for selective fishing to reduce purse-seine catches of undersized yellowfin tuna |
|
2022 Scientists decode yellowfin acoustic signature through Achotines research. Contrasting frequency responses have been identified for skipjack, bigeye, and yellowfin tuna. |
Learn More
ISSF Acoustic Research “Target strength of yellowfin tuna (Thunnus albacares) and acoustic discrimination of three tropical tuna species” | ICES Journal of Marine Science journal article |
|
ISSF Acoustic Research “Towards acoustic discrimination of tropical tuna associated with Fish Aggregating Devices” | PLOS One journal article |
|
Acoustic Discrimination Research “Towards acoustic discrimination of Tuna species at FADs” | ISSF blog post |
|
Reducing Bycatch “Decoding the acoustic signatures of bigeye and skipjack tuna at sea could help fishers estimate the number of fish by species and size — and reduce bycatch" | ISSF blog post |
WEBSITE
—
iss-foundation.org
E-MAIL — info@iss-foundation.org SUPPORT — Donate to ISSF SUBSCRIBE — Sign up for the eNewsletter |
---|
©2022 ALL RIGHTS RESERVED. INTERNATIONAL SEAFOOD SUSTAINABILITY FOUNDATION